

EVALUATING THE IMPACT OF VERTICAL GREENERY SYSTEM ON **COOLING EFFECT** IN A HIGH RISE BUILDING AND SURROUNDINGS IN PETALING JAYA

BADRULZAMAN JAAFAR PhD Candidate (PB103087) Supervisor : Associate Professor Dr. Ismail Said

Dr. Mohd Hisham Rasidi Dr. Mohd Nadzri Md Reba January 10, 2012

INTRODUCTION

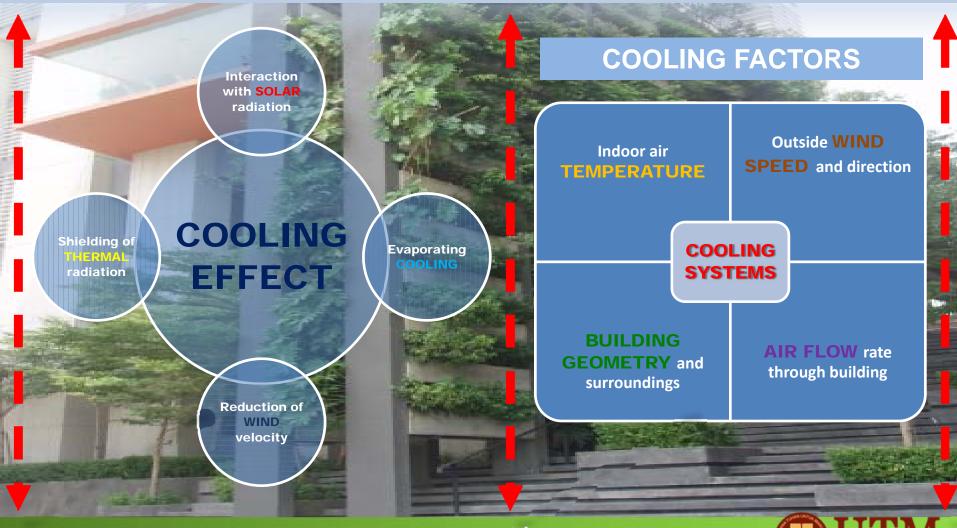
- The rapid pace of urbanization and the growing concern for climate change ,
- Removal of greenery and replaced them with buildings and paved streets,
- Due to artificial urbanization, urban heat islands have become a serious problem,
- Greenery can be used as a tool for mitigating the Urban Heat Island (UHI) effect,
- Greening of the facade of building walls, known as vertical greenery systems (VGSs), has yet to be fully explored and exploited.

RESEARCH AIM & OBJECTIVES

The aim of this study is to analyse and assess the influence of Vertical Greenery System (VGS) as a tool in - reducing the surface temperature of the walls and enhance the cooling effect of the building and its surroundings.

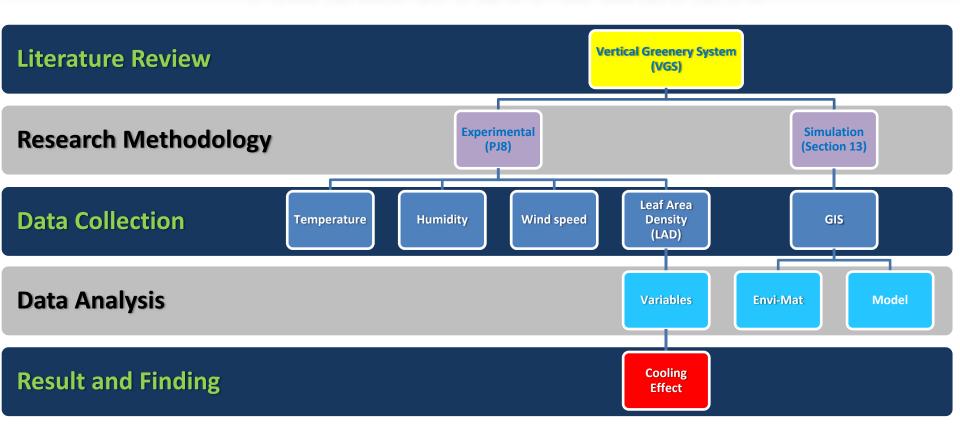
The objectives of this study include :

- (1) studying the effects of VGS in lowering high temperatures in the wall of the building and its surroundings, and
- (2) comparing the effectiveness of using VGS tools through **experiment** and **simulation** to reduce the UHI effect.


Scope of study :

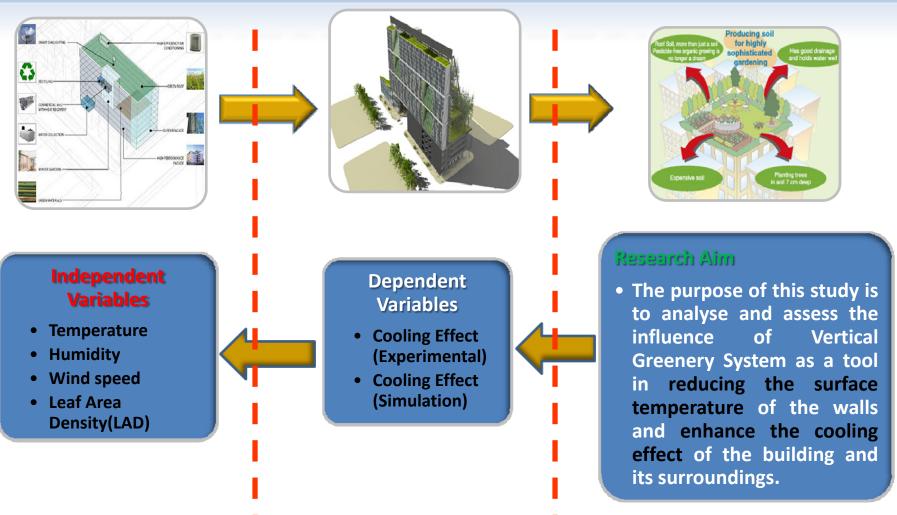
Related to the **cooling effect** of the **building** and the environment by using a VGS. Limitation of the study covers only the parameter effects on the microclimate of the building and study the effect of cooling technology. It does not involve the study of materials and structures.

ELEMENTS OF COOLING



THEORETICAL FRAMEWORK

- Research work is based on the results of the experiments, simulations and data collection. This study will use a quantitative approach.
- This study is a combination of experimental data and work to collect data in the field.
- Results of experiments and data collected will be used as a source of design simulation models.
- Data obtained from the materials and methods used to evaluate and predict the performance of the system resources and green vertical.
- ✓ This study will depend on three levels.
 - First, the characteristics that affect the urban heat island (UHI) and the effectiveness of surface cooling in the building and its surroundings.
 - Second, on-site data collection as a guide for the study.
 - Third, the use of equipment such as GIS and Envi-met in this study.



RESEARCH DESIGN

RESEARCH DESIGN

Green Innovative Research Group, Universiti Teknologi Malaysia

UNIVERSITI TEKNOLOGI MALAYSIA

RESEARCH PARAMETERs

PARAMETERS	DATA TO BE MEASURED	EQUIPMENTS							
Temperature	 Thermal radiation Heat absorption Lands Surface Temperature (LST) 	WatchDog 2900ET							
Moisture	 Wet area Dry area Rainfall collection 	Weather Station (Standard							
Wind speed	 Air flow Direction Building structure 	Features)	WatchDog Model 2900ET Weather Station						
Leaf Area Density (LAD)	 Green coverage Thickness of plant Leaf Area Index (LAI) 	LI-COR (USA) Plant Canopy Analyzer Calculation (LAI 2000)	ER						

SCHEDULE OF WORK

RESEARCH TIMELINE									SEN	/IESTI	ER 1	– 20 ⁻	11/2	012										
		12 September – 2 December 2011													5 Dec		er – 2	REMARKS						
		_		-	-	20)11								<u> </u>		2012	_						
WEEKS	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
PHASE – 1 : PRE-PREPARATION																								
Obtain the necessary equipment for data collection on site												-											Pending approval UTM Procurement (29.11.11)	
Determine the appropriate location for the installation of equipment on site																							Topographic data and satellite images have been obtained from MACRES. (20.09.11)	
Set the number of focal points for taking data on site																								
Provide a standard operating procedure for reference at the site											-										-		Still in the process of discussions with building owners PJ8 (IJM)	
Provide the forms to record information and data on site																							Still in discussion with the supervisor and PJ8 (IJM)	
PHASE – 2 : DURING DATA ACQUISITION																								
Provide on-site data collection schedule																							Still in discussion with the supervisor and PJ8 (IJM)	
Recording of all data collected on site & relevant agency			+	+																			Rainfall data Meteorological Dept. (Year 2010 and 2011) (23.11.11)	
Monitoring the safety and care of equipment on site																							Monitoring and provision of equipment on site will be	
Ensure the maintenance done on the equipment on site			_		-																		implemented after it is obtained from Procurement Unit, UTM.	
Obtain advice on training and equipment on site																							Training will be held after the equipment is obtained from UTM	
PHASE – 3 : POST DATA ACQUISITION																								
Ensure that all data obtained in accordance with specified parameters																							Data collection will begin after all equipment is available from the	
Collect all forms and records of data used																								
Clearing all equipment installed on site																							Procurement Unit, UTM. Data collection time period required for 6	
Check all of the data obtained complete and meet the requirements of the study																							months.	
Analyze all data obtained in preliminary																								

ACTIVITIES Semester 2 – 2011/2012

Badrulzaman Jaafar

Presenter

with entitled paper

Evaluating the Impact of Vertical Greenery System on Cooling Effect in A High Rise Building and Surroundings: A Review

The 12th International Conference on

Sustainable Environment and Architecture - SENVAR 2011 on 10-11 November 2011, at Widyaloka Hall, Brawijaya University, Malang, Indonesi

Subhan Ramdlani, ST., MT. Chairman of The 12th SENVAR DR. Ing. Ir. Eka Sediadi Rasyad President of International Association of Environmental Architecture (IAEA)

SENVAR 2011 – Surabaya, Indonesia (10 – 11 November 2011)

Academic visit to Centre for Sustainable Asian Cities (CSAC), NUS, Singapore (17 November 2011)

UTN UNIVERSITI TEKNOLOGI MALAYS